skip to main content


Search for: All records

Creators/Authors contains: "Owers, Matt S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Most dynamical models of galaxies to date assume axisymmetry, which is not representative of a significant fraction of massive galaxies. We have built triaxial orbit-superposition Schwarzschild models of galaxies observed by the SAMI Galaxy Survey, in order to reconstruct their inner orbital structure and mass distribution. The sample consists of 153 passive galaxies with total stellar masses in the range 109.5 to $10^{12} \, {\rm M}_{\odot }$. We present an analysis of the internal structures and intrinsic properties of these galaxies as a function of their environment. We measure their environment using three proxies: central or satellite designation, halo mass and local 5th nearest neighbour galaxy density. We find that although these intrinsic properties correlate most strongly with stellar mass, environment does play a secondary role: at fixed stellar mass, galaxies in the densest regions are more radially anisotropic. In addition, central galaxies, and galaxies in high local densities show lower values of edge-on spin parameter proxy λRe, EO. We also find suggestions of a possible trend of the fractions of orbits with environment for lower mass galaxies (between 109.5 and $10^{11} \, {\rm M}_{\odot }$) such that, at fixed stellar mass, galaxies in higher local densities and halo mass have higher fractions of hot orbits and lower fractions of warm orbits. Our results demonstrate that after stellar mass, environment does play a role in shaping present-day passive galaxies.

     
    more » « less
  2. ABSTRACT

    We study environmental quenching using the spatial distribution of current star formation and stellar population ages with the full SAMI Galaxy Survey. By using a star formation concentration index [C-index, defined as log10(r50, H α/r50, cont)], we separate our sample into regular galaxies (C-index ≥−0.2) and galaxies with centrally concentrated star formation (SF-concentrated; C-index <−0.2). Concentrated star formation is a potential indicator of galaxies currently undergoing ‘outside-in’ quenching. Our environments cover ungrouped galaxies, low-mass groups (M200 ≤ 1012.5M⊙), high-mass groups (M200 in the range 1012.5–14 M⊙) and clusters (M200 > 1014M⊙). We find the fraction of SF-concentrated galaxies increases as halo mass increases by 9 ± 2 per cent, 8 ± 3 per cent, 19 ± 4 per cent, and 29 ± 4 per cent for ungrouped galaxies, low-mass groups, high-mass groups, and clusters, respectively. We interpret these results as evidence for ‘outside-in’ quenching in groups and clusters. To investigate the quenching time-scale in SF-concentrated galaxies, we calculate light-weighted age (AgeL) and mass-weighted age (AgeM) using full spectral fitting, as well as the Dn4000 and HδA indices. We assume that the average galaxy age radial profile before entering a group or cluster is similar to ungrouped regular galaxies. At large radius (1–2 Re), SF-concentrated galaxies in high-mass groups have older ages than ungrouped regular galaxies with an age difference of 1.83 ± 0.38 Gyr for AgeL and 1.34 ± 0.56 Gyr for AgeM. This suggests that while ‘outside-in’ quenching can be effective in groups, the process will not quickly quench the entire galaxy. In contrast, the ages at 1–2 Re of cluster SF-concentrated galaxies and ungrouped regular galaxies are consistent (difference of 0.19 ± 0.21 Gyr for AgeL, 0.40 ± 0.61 Gyr for AgeM), suggesting the quenching process must be rapid.

     
    more » « less
  3. ABSTRACT The kinematic morphology–density relation of galaxies is normally attributed to a changing distribution of galaxy stellar masses with the local environment. However, earlier studies were largely focused on slow rotators; the dynamical properties of the overall population in relation to environment have received less attention. We use the SAMI Galaxy Survey to investigate the dynamical properties of ∼1800 early and late-type galaxies with log (M⋆/M⊙) > 9.5 as a function of mean environmental overdensity (Σ5) and their rank within a group or cluster. By classifying galaxies into fast and slow rotators, at fixed stellar mass above log (M⋆/M⊙) > 10.5, we detect a higher fraction (∼3.4σ) of slow rotators for group and cluster centrals and satellites as compared to isolated-central galaxies. We find similar results when using Σ5 as a tracer for environment. Focusing on the fast-rotator population, we also detect a significant correlation between galaxy kinematics and their stellar mass as well as the environment they are in. Specifically, by using inclination-corrected or intrinsic $\lambda _{R_{\rm {e}}}$ values, we find that, at fixed mass, satellite galaxies on average have the lowest $\lambda _{\, R_{\rm {e}},\rm {intr}}$, isolated-central galaxies have the highest $\lambda _{\, R_{\rm {e}},\rm {intr}}$, and group and cluster centrals lie in between. Similarly, galaxies in high-density environments have lower mean $\lambda _{\, R_{\rm {e}},\rm {intr}}$ values as compared to galaxies at low environmental density. However, at fixed Σ5, the mean $\lambda _{\, R_{\rm {e}},\rm {intr}}$ differences for low and high-mass galaxies are of similar magnitude as when varying Σ5 ($\Delta \lambda _{\, R_{\rm {e}},\rm {intr}} \sim 0.05$, with σrandom = 0.025, and σsyst < 0.03). Our results demonstrate that after stellar mass, environment plays a significant role in the creation of slow rotators, while for fast rotators we also detect an independent, albeit smaller, impact of mass and environment on their kinematic properties. 
    more » « less
  4. ABSTRACT

    We investigate the mean locally measured velocity dispersions of ionized gas (σgas) and stars (σ*) for 1090 galaxies with stellar masses $\log \, (M_{\!\ast }/M_{\odot }) \ge 9.5$ from the SAMI Galaxy Survey. For star-forming galaxies, σ* tends to be larger than σgas, suggesting that stars are in general dynamically hotter than the ionized gas (asymmetric drift). The difference between σgas and σ* (Δσ) correlates with various galaxy properties. We establish that the strongest correlation of Δσ is with beam smearing, which inflates σgas more than σ*, introducing a dependence of Δσ on both the effective radius relative to the point spread function and velocity gradients. The second strongest correlation is with the contribution of active galactic nuclei (AGN) (or evolved stars) to the ionized gas emission, implying that the gas velocity dispersion is strongly affected by the power source. In contrast, using the velocity dispersion measured from integrated spectra (σap) results in less correlation between the aperture-based Δσ (Δσap) and the power source. This suggests that the AGN (or old stars) dynamically heat the gas without causing significant deviations from dynamical equilibrium. Although the variation of Δσap is much smaller than that of Δσ, a correlation between Δσap and gas velocity gradient is still detected, implying that there is a small bias in dynamical masses derived from stellar and ionized gas velocity dispersions.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We measure the gas-phase metallicity gradients of 248 galaxies selected from Data Release 2 of the SAMI Galaxy Survey. We demonstrate that there are large systematic discrepancies between the metallicity gradients derived using common strong emission line metallicity diagnostics. We determine which pairs of diagnostics have Spearman’s rank coefficients greater than 0.6 and provide linear conversions to allow the accurate comparison of metallicity gradients derived using different strong emission line diagnostics. For galaxies within the mass range 8.5 < log (M/M⊙) < 11.0, we find discrepancies of up to 0.11 dex/Re between seven popular diagnostics in the metallicity gradient–mass relation. We find a suggestion of a break in the metallicity gradient–mass relation, where the slope shifts from negative to positive, occurs between 9.5 < log (M/M⊙) < 10.5 for the seven chosen diagnostics. Applying our conversions to the metallicity gradient–mass relation, we reduce the maximum dispersion from 0.11 dex/Re to 0.02 dex/Re. These conversions provide the most accurate method of converting metallicity gradients when key emission lines are unavailable. We find that diagnostics that share common sets of emission line ratios agree best, and that diagnostics calibrated through the electron temperature provide more consistent results compared to those calibrated through photoionization models. 
    more » « less
  6. ABSTRACT We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. Here, in Data Release 3, we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370–570 nm) and red (630–740 nm) optical wavelength ranges at spectral resolving power of R = 1808 and 4304, respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parametrized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics Data Central. 
    more » « less